Affiliation:
1. Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602
Abstract
Reverse engineering, defined as extracting information about a product from the product itself, is a common industry practice for gaining insight into innovative products. Both the original designer and those reverse engineering the original design can benefit from estimating the time and barrier to reverse engineer a product. This paper presents a set of metrics and parameters that can be used to calculate the barrier to reverse engineer any product, as well as the time required to do so. To the original designer, these numerical representations of the barrier and time can be used to strategically identify and improve product characteristics so as to increase the difficulty and time to reverse engineer them. As the metrics and parameters developed in this paper are quantitative in nature, they can also be used in conjunction with numerical optimization techniques, thereby enabling products to be developed with a maximum reverse engineering barrier and time—at a minimum development cost. On the other hand, these quantitative measures enable competitors who reverse engineer original designs to focus their efforts on products that will result in the greatest return on investment.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献