Metrics for Evaluating the Barrier and Time to Reverse Engineer a Product

Author:

Harston Stephen P.1,Mattson Christopher A.1

Affiliation:

1. Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602

Abstract

Reverse engineering, defined as extracting information about a product from the product itself, is a common industry practice for gaining insight into innovative products. Both the original designer and those reverse engineering the original design can benefit from estimating the time and barrier to reverse engineer a product. This paper presents a set of metrics and parameters that can be used to calculate the barrier to reverse engineer any product, as well as the time required to do so. To the original designer, these numerical representations of the barrier and time can be used to strategically identify and improve product characteristics so as to increase the difficulty and time to reverse engineer them. As the metrics and parameters developed in this paper are quantitative in nature, they can also be used in conjunction with numerical optimization techniques, thereby enabling products to be developed with a maximum reverse engineering barrier and time—at a minimum development cost. On the other hand, these quantitative measures enable competitors who reverse engineer original designs to focus their efforts on products that will result in the greatest return on investment.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Bishop-Hill model combined finite element analysis for elastic-yield limited design;Engineering Computations;2015-08-03

2. Using Topology Optimization to Numerically Improve Barriers to Reverse Engineering;Journal of Mechanical Design;2013-12-11

3. Characterizing the Effects of Learning When Reverse Engineering Multiple Samples of the Same Product;Journal of Mechanical Design;2012-11-21

4. Creating Barriers to Reverse Engineering Using Topology Optimization;12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference;2012-09-11

5. Product decomposition using design structure matrix for intellectual property protection in supply chain outsourcing;Computers in Industry;2012-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3