Quantitative Visualization of the Flow Within the Volute of a Centrifugal Pump. Part B: Results and Analysis

Author:

Dong R.1,Chu S.1,Katz J.1

Affiliation:

1. Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218

Abstract

PDV is used for measuring the velocity within the volute of a centrifugal pump at different impeller blade orientations, on and off design conditions. It is demonstrated that the flow is “pulsating” and depends on the location of the blade relative to the tongue. The leakage also depends on blade orientation and increases with decreasing flow rate. The velocity near the impeller is dominated by the jet/wake phenomenon. Differences in the outflux from the impeller, resulting from changes inflow rate, occur primarily near the exit. Away from the tongue the distributions of vθ mostly agrees with the assumption that vθ ∝ 1/r. Sites prone to high velocity fluctuations include the blade wake, interface between the jet and the wake and near the tongue. Angular momentum and kinetic energy fluxes, turbulent stresses and tubulence production are also computed. It is shown that at the same θ the momentum flux can increase near the impeller and decrease at the perimeter. Consequently, the mean flux cannot be used for estimating conditions near the impeller. Torques caused by τrθ and τθθ can be as high as 2 and 5 percent of the change in angular momentum flux, respectively.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3