A Closed-Form Numerical Algorithm for the Periodic Response of High-Speed Elastic Linkages

Author:

Midha A.1,Erdman A. G.2,Frohrib D. A.2

Affiliation:

1. Dept. of Mechanical Engineering, The Pennsylvania State University, University Park, Pa. 16802

2. Design and Control Division, Mechanical Engineering Department, University of Minnesota, Minneapolis, Minn.

Abstract

A numerical closed-form algorithm, easily adaptable for computer simulation, is developed to solve for the periodic solutions of vibrating systems, and in particular, the high-speed elastic linkage. The algorithm is first introduced to solve the single degree-of-freedom mass-dashpot-spring system, the governing differential equation of which is a linear, second-order equation with constant coefficients. This algorithm is utilized as a basic tool and extended to solve a single degree-of-freedom mass-dashpot-spring system whose governing differential equation of motion is a linear, second-order equation with time-dependent and periodic coefficients. The system is excited by a periodic forcing function and solution is made possible by discretizing the forcing time period into a number of time intervals, the system parameters remaining constant over the duration of each interval. During each interval, the solution form is assumed to be that of the differential equation with “constant” coefficients. Constraint equations result from imposing the conditions of “compatibility” of response at the discrete time nodes and the conditions of “periodicity” of response at the end nodes of the time period. Also, the sum of the integration required is over one forcing time period only. This closed-form nature of the computational procedure results in large savings in computer time to acquire the periodic solution. The suggested numerical algorithm is then employed to solve an elastic linkage problem.

Publisher

ASME International

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3