The Stefan Problem With Internal Heat Generation in Spherical Coordinates

Author:

Williams Sidney1,Barannyk Lyudmyla2,Crepeau John3,Paulus Patrick3

Affiliation:

1. Department of Mathematics and Statistical Science, University of Idaho , Moscow, ID 83844

2. Departments of Mathematics and Statistical Science, University of Idaho , Moscow, ID 83844

3. Department of Mechanical Engineering, University of Idaho , Moscow, ID 83844

Abstract

Abstract A weakly time-dependent equation for the evolution of the solid–liquid interface in spherical coordinates, driven by internal heat generation, is derived for constant surface temperature boundary conditions. The derivation comes by making an assumption that the interface moves slowly compared to the changes in the temperature so that the technique of separation of variables may be applied for Stefan numbers less than one. Under this approximation, we can separate the nonhomogeneous heat diffusion equation into transient and steady-state terms, and then integrate to get the temperature relations. With the temperature equations in hand, the derivatives are inserted into the interface equation giving a first-order differential equation for the location of the solid–liquid interface as a function of time. The results are compared to a previously derived quasi-static solution and a numerical simulation generated using the method of catching of the front. This method allows for direct tracking of a moving boundary via the calculation of the time it takes to move from node to node in a discretized grid characteristic of classical finite difference methods. Plots of the interface evolution show excellent agreement between the three methods, especially for lower Stefan numbers. The quality of the approximation decreases as the Stefan number increases, but the model is more accurate than the previously studied quasi-static model. For the Stefan numbers St = 1.0 and 10.0, the weakly time-dependent solutions are in better agreement with the numerical results than the quasi-static solutions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference45 articles.

1. Mémoire Sur la Solidification Par Refroidissement D'un Globe Liquid;Ann. Chim. Phys.,1831

2. Über Die Theorie Der Eisbildung, Insbesondere Über Die Eisbildung im Polarmeere;Sitzungsberichte Der Kaiserlichen Akademie Der Wissenschaften, Mathematische-Naturwissenschaftliche Classe, II Abtheilung,1889

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3