What a Wave Buoy Actually Measures in 3D: Analysis of a Mild Sea State

Author:

Ding Yue1,Taylor Paul H.1,Zhao Wenhua1,Dory Jean-Noel2

Affiliation:

1. The University of Western Australia Oceans Graduate School, , Perth, WA 6009 , Australia

2. BW Ideol , La Ciotat 13600 , France

Abstract

Abstract Measurements of surface waves from oceanographic buoys have been regarded as the “ground truth” for validation of sea-state prediction models, providing the basis for input to the design of offshore structures. The engineering practice is to produce wave statistics of vertical surface displacements over periods of years. However, a wave buoy can provide simultaneous time histories of its motion, one vertically and the other two horizontally, giving the complete vector displacement field in time. We investigate the measured time histories of a wave buoy in three orthogonal directions and explore the relationship between them, for a relatively benign, so typical, sea state. We adopt a NewWave-type analysis to investigate the average shape of the large events across the measured time histories. In combination with a conditioning analysis, we give a reciprocity relationship between the vertical displacement of the wave buoy and those in the horizontal plane. The relationship is of value, as it allows for the prediction of wave kinematics in the horizontal plane based on the vertical measurement only. We observe significant second-order components in the measured data in the horizontal directions and smaller contributions vertically. This data-driven analysis paves the way for wave-by-wave prediction and the active control of wave energy converters and personnel transfers offshore.

Funder

Australian Research Council

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference25 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3