Mechanics of Chiral Honeycomb Architectures With Phase Transformations

Author:

Hector Kristiaan W.1,Restrepo David12,Tejedor Bonilla Cristian1,Hector Louis G.3,Mankame Nilesh3,Zavattieri Pablo D.1

Affiliation:

1. Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907

2. Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249

3. General Motors Global R&D Center, Warren, MI 48092

Abstract

Abstract The mechanics of phase transforming cellular materials (PXCMs) with three different chiral honeycomb architectures, viz., hexachiral, tetra-anti-chiral, and tetra-chiral, are investigated under quasi-static loading/unloading. Each PXCM comprises interconnected unit cells consisting of tape springs rigidly affixed to circular nodes that can rotate and/or translate. The phase change is associated with snap-through instability due to bending of the tape springs and corresponds to sudden changes in the geometry of the unit cells from one stable configuration to another stable (or metastable) configuration during loading/unloading. When compared with similar chiral materials with flat ligaments, the chiral PXCMs exhibit a significantly higher energy dissipation in quasi-static experiments. The hexachiral PXCM was selected for detailed parametric analysis with finite element simulations including 21 models constructed to investigate the effects of PXCM geometry on phase change and energy dissipation. An analytical formalism is developed to predict the minimum compressive load required to induce phase transformation and snap-through. The formalism predictions are compared with those from finite element simulations. An Ashby plot is developed in which the energy dissipated per unit volume versus work conjugate plateau stress of the H-PXCM is compared with other energy absorbing materials.

Funder

National Science Foundation

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3