The Enhancement of Spray Cooling Performance in Nucleate and Transition Boiling Regimes by Using Saline Water Containing Dissolved Carbon Dioxide

Author:

Das Lily1,Munshi B.1,Mohapatra S. S.1

Affiliation:

1. Department of Chemical Engineering, National Institute of Technology, Rourkela, Rourkela 769008, Odisha, India

Abstract

Abstract In the current work, by using various additives, the spray cooling in the transition boiling regime is significantly augmented due to the vapor film instability enhancing, which helps to overcome the disadvantages reported in the open literature for the attainment of high heat flux in the aforesaid boiling regime. Saline water containing dissolved carbon dioxide produces two favorable conditions for high heat transfer rate: (1) controlled vapor bubble nucleation and (2) low entrapped vapor bubbles coalescence rate. These phenomena are the parameters defining the step-up in the heat transfer rate. Systematic spray cooling (from 900 °C) experiments were conducted on a 6-mm thick AISI 304 steel plate (100 mm × 100 mm). The heat transfer analysis indicates that the heat removal rate in case of soda added water depicts an increasing trend with the rising of the soda concentration up to 40% in water, and further increment in soda water concentration declines the heat removal rate due to the formation of the uncontrolled vapor bubbles undergoing early coalescence. In case of salt added carbonated water spray cooling, the quenching performance indicates step-up in critical heat flux up to 1.7 MW/m2. In addition to the above, the spray cooling performance of the above-stated coolant is compared with other potential coolants such as soda–surfactant–water, soda–alcohol–water and soda–salt–surfactant–water mixtures.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3