Sparse Metapiles for Shear Wave Attenuation in Half-Spaces

Author:

Celli Paolo1,Nunzi Ilaria23,Calabrese Andrea4,Lenci Stefano3,Daraio Chiara5

Affiliation:

1. Stony Brook University Department of Civil Engineering, , Stony Brook, NY 11794

2. California Institute of Technology Division of Engineering and Applied Science, , Pasadena, CA 91125 ;

3. Polytechnic University of Marche Department of Civil, Building Engineering, and Architecture, , Ancona 60131 , Italy

4. California State University Department of Civil Engineering & Construction Engineering Management, , Long Beach, CA 90815

5. California Institute of Technology Division of Engineering and Applied Science, , Pasadena, CA 91125

Abstract

Abstract We show that shear waves traveling toward the surface of a half-space medium can be attenuated via buried one-dimensional arrays of resonators—here called metapiles—arranged according to sparse patterns around a site to be isolated. Our focus is on shear waves approaching the surface along a direction perpendicular to the surface itself. First, we illustrate the behavior of metapiles, both experimentally and numerically, using 3D printed resonators embedded in an acrylic plate. Then, via numerical simulations, we extend this idea to the case study of an idealized half-space and elucidate the influence of various design parameters on wave attenuation. Results of this work demonstrate that significant wave attenuation can be achieved by installing sparse resonating piles around a selected site on the free surface of the medium, rather than placing resonators directly underneath that same site. This work might have implications in metamaterial-based wave attenuation applications across scales.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3