Effect of Microstructural Parameters on the Machinability of Aligned Carbon Nanotube Composites

Author:

Samuel Johnson1,Kapoor Shiv G.1,DeVor Richard E.1,Hsia K. Jimmy1

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801

Abstract

The objective of this paper is to understand through parametric studies the effect of microstructural parameters, viz., the carbon nanotube (CNT) orientation with respect to the cutting direction, CNT loading, and level of dispersion within the matrix on the machinability of aligned CNT composites. To this end, a microstructure-based finite element machining model is used to simulate microstructures containing 1.5% and 6% by weight of CNTs. Microstructures with both uniform and nonuniform dispersions of CNTs are simulated. For each of these cases, CNTs having orientations of 0 deg, 45 deg, 90 deg, and 135 deg to the cutting direction are studied. The machining simulations were conducted using a positive rake tool. Chip morphology, cutting forces, surface roughness, and surface/subsurface damages are the machinability measures used for comparison. The results of the parametric studies demonstrate that the CNT orientation, loading, and level of dispersion all play a critical role in dictating the machining response of aligned composites. The results further indicate that the surface morphology of the machined surface can be harnessed to produce the next generation of microfluidic devices. This application demonstrates the feasibility of designing the microstructure of CNT composites by taking into account both their engineering functionality and machinability.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microstructure-based finite element model for fracture cutting of bovine cortical bone;Journal of Manufacturing Processes;2023-09

2. A review on micro machining of polymer composites;Journal of Manufacturing Processes;2022-05

3. Influence of fillers on polymeric composite during conventional machining processes: a review;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2021-01-26

4. Micro/Meso-Scale Mechanical Machining 2020: A Two-Decade State-of-the-Field Review;Journal of Manufacturing Science and Engineering;2020-09-08

5. Estimating the Cohesive Zone Model Parameters of Carbon Nanotube–Polymer Interface for Machining Simulations;Journal of Manufacturing Science and Engineering;2014-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3