Comprehensive Studies on the Effect of Reducing Agents on Electrocatalytic Activity and Durability of Platinum Supported on Carbon Support for Oxygen Reduction Reaction

Author:

Ravichandran Sabarinathan1,Bhuvanendran Narayanamoorthy2,Zhang Weiqi2,Xu Qian2,Khotseng Lindiwe3,Su Huaneng2

Affiliation:

1. School of Material Science and Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China

2. Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China

3. Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa

Abstract

Abstract Platinum supported on carbon support (Pt/C) is currently the most common and practicable electrocatalyst for the real application of polymer electrolyte membrane fuel cells (PEMFCs). In this work, it was found that the nature of a reducing agent has noteworthy influence on Pt nanoparticles growth and distribution over acid-treated-Vulcan carbon support (Pt/AT-VC), which was employed to catalyze the oxygen reduction reaction (ORR) for PEMFC. Three distinct reducing agents, i.e., sodium borohydride (BH), sodium citrate (CA), and formaldehyde (FMY), were employed for Pt/AT-VC preparation through the impregnation-reduction approach. The impacts of the reducing agent on Pt nanoparticles size and its distribution over carbon support were scrutinized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (TEM) techniques. The electrocatalytic performance for ORR was subsequently studied by a three-electrode setup with rotating ring-disc electrode (RRDE) characterization and practical fuel cell operation. The ORR kinetics and mechanism were confirmed from RRDE, and it was well correlated with the durability test and single-cell results. Based on the results, the catalysts’ performances for practical PEMFC can be arranged in the order of Pt/AT-VC (BH) < Pt/AT-VC (CA) < Pt/AT-VC (FMY), implying the significance of selecting the reducing agent for the preparation of Pt/C for PEMFC real application.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3