Spatial Flow-Field Approximation Using Few Thermodynamic Measurements—Part II: Uncertainty Assessments

Author:

Seshadri Pranay12,Duncan Andrew32,Simpson Duncan4,Thorne George4,Parks Geoffrey5

Affiliation:

1. Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK;

2. Data-Centric Engineering, The Alan Turing Institute, London NW1 2DB, UK

3. Department of Mathematics, Imperial College London, London SW7 2AZ, UK;

4. Civil Aerospace, Rolls-Royce plc, Derby DE24 8BJ, UK

5. Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

Abstract

AbstractIn this second part of our two-part paper, we provide a detailed, frequentist framework for propagating uncertainties within our multivariate linear least squares model. This permits us to quantify the impact of uncertainties in thermodynamic measurements—arising from calibrations and the data acquisition system—and the correlations therein, along with uncertainties in probe positions. We show how the former has a much larger effect (relatively) than uncertainties in probe placement. We use this non-deterministic framework to demonstrate why the well-worn metric for assessing spatial sampling uncertainty falls short of providing an accurate characterization of the effect of a few spatial measurements. In other words, it does not accurately describe the uncertainty associated with sampling a non-uniform pattern with a few circumferentially scattered rakes. To this end, we argue that our data-centric framework can offer a more rigorous characterization of this uncertainty. Our paper proposes two new uncertainty metrics: one for characterizing spatial sampling uncertainty and another for capturing the impact of measurement imprecision in individual probes. These metrics are rigorously derived in our paper and their ease in computation permits them to be widely adopted by the turbomachinery community for carrying out uncertainty assessments.

Publisher

ASME International

Subject

Mechanical Engineering

Reference21 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3