Comprehensive Performance Analysis and Correlation Fitting of R744 and Its Mixture Used in Refrigeration and Heat Pump Systems

Author:

Sun Dahan1,Liu Zhongyan2,Zhang Hao2,Zhang Xin2

Affiliation:

1. Harbin Institute of Technology School of Energy Science and Engineering, , No. 92, West Da-Zhi Street, Harbin, Heilongjiang 150001 , China

2. Northeast Electric Power University School of Energy and Power Engineering, , 169, Changchun Road, Jilin City, Jilin 132012 , China

Abstract

Abstract In this paper, the performance of R744 and R744/R170 mixed refrigerants in refrigeration and air source heat pump systems is studied by the simulation method. The change trend of coefficient of performance (COP), refrigeration/heat capacity, power consumption with discharge pressure, and the ratio of R744 is analyzed. In addition, optimal parameters of the system are discussed in detail with the change of evaporation temperature, outlet temperature of the gas cooler, and different proportions of R744. The results show that when the discharge pressure is 8–12 MPa, there is a critical ratio of R744. When the ratio of R744 is less than the critical ratio, the optimal pressure of the system increases with the increase of the ratio of R744, and when the ratio of R744 is higher than critical ratio, the optimal pressure of the system decreases with the increase of the ratio of R744. The change trend of COP with the ratio of R744 is first decreasing and then increasing, the optimal discharge temperature of the system increases with the increase of the ratio of R744, and the change trend of optimal discharge pressure with the ratio of R744 is first increasing and then decreasing. In addition, when the evaporation temperature is 233–253 K and the gas cooler outlet temperature is 308–318 K, the average optimal pressure and temperature of R744/R170 (25/75) are 11.64% and 8.06% lower than R744, respectively. And it is the most suitable refrigerant to replace R744. Finally, the optimal performance parameter correlations of R744, R744/R170 (25/75), R744/R170 (50/50), and R744/R170 (77.6/22.4) under the given conditions are fitted through the simulation data.

Publisher

ASME International

Reference32 articles.

1. Regulation (EU) No 517/2014 of the European Parliament and of the Council on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No. 842/2006;The European Parliament, the Council of the European Union;Official J. Eur. Union,2014

2. A new, Efficient and Environmentally Benign System for Car Air-Conditioning;Lorentzen;Int. J. Refrig.,1993

3. Exergetic Analysis of Different R744 Heat Pump Tumble Dryer System Topologies;Brandt;Appl. Therm. Eng.,2019

4. Analysis of Refrigerant Pipe Pressure Drop of a CO2 Air Conditioning Unit for Vehicles;Subei;Int. J. Refrig.,2019

5. Automotive AC/HP Systems Using R744 (CO2);Memory,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3