Real-Time Analysis of the Dynamic Foot Function: A Machine Learning and Finite Element Approach

Author:

Tarrade Tristan1,Dakhil Nawfal2,Behr Michel3,Salin Dorian4,Llari Maxime5

Affiliation:

1. Laboratoire de Biomécanique Appliquée, Faculté de Médecine secteur Nord, Aix-Marseille Univ., Univ. Gustave Eiffel, IFSTTAR, LBA, UMR T24, 51 Boulevard Pierre Dramard, Marseille cedex 20 F-13016, France; Podo 3D, 1 Rue Chappe, Les Mureaux 78130, France

2. Technical Institute of Dewaniya, Al-Furat Al-Awsat Technical University-Kufa, Babylon-najaf Street, Al-Kuf 54003, Iraq

3. Laboratoire de Biomécanique Appliquée, Faculté de Médecine secteur Nord, Aix-Marseille Univ., Univ. Gustave Eiffel, IFSTTAR, LBA, UMR T24, 51 Boulevard Pierre Dramard, Marseille cedex 20 F-13016, France

4. CADLM, 32 Rue Victor Baloche, Wissous 91320, France

5. Laboratoire de Biomécanique Appliquée, Faculté de Médecine secteur Nord, Aix-Marseille Univ, Univ Gustave Eiffel, IFSTTAR, LBA, UMR T24, Laboratoire de Biomécanique Appliquée, 51 Boulevard Pierre Dramard, Marseille cedex 20 F-13016, France

Abstract

Abstract Finite element analysis (FEA) has been widely used to study foot biomechanics and pathological functions or effects of therapeutic solutions. However, development and analysis of such foot modeling is complex and time-consuming. The purpose of this study was therefore to propose a method coupling a FE foot model with a model order reduction (MOR) technique to provide real-time analysis of the dynamic foot function. A generic and parametric FE foot model was developed and dynamically validated during stance phase of gait. Based on a design of experiment of 30 FE simulations including four parameters related to foot function, the MOR method was employed to create a prediction model of the center of pressure (COP) path that was validated with four more random simulations. The four predicted COP paths were obtained with a 3% root-mean-square-error (RMSE) in less than 1 s. The time-dependent analysis demonstrated that the subtalar joint position and the midtarsal joint laxity are the most influential factors on the foot functions. These results provide additionally insight into the use of MOR technique to significantly improve speed and power of the FE analysis of the foot function and may support the development of real-time decision support tools based on this method.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3