Parameter Identification Based on Nonlinear Observer for Mechanical Systems

Author:

Ordaz Patricio1,Ramírez Miguel1,Rodríguez Liliam1,Cuvas Carlos1,Romero Hugo1,Sandre Omar1

Affiliation:

1. Research Center on Technology of Information and Systems (CITIS), Electronic and Control Academic Group, Universidad Autónoma del Estado de Hidalgo (UAEH), Pachuca de Soto, Hidalgo 42184, Mexico

Abstract

Abstract This paper deals with the parameter identification problem for nonlinear mechanical systems based on state estimation. Here, the concept of Sliding Mode Observer for finite time state estimation and the Least-Square Method for parameter identification have been combined; thus, guaranteeing that the estimated state converges to the real one in a finite time. The asymptotic parameter identification is performed by applying the Least-Square approach, minimizing the so-called joint uncertainty; in this process, a specific persistent excitation condition is introduced to guarantee the effectiveness of the proposed identification algorithm. With the proposed approach and some considerations, the algorithm is capable of estimating friction coefficients and inertia moments, within a narrow time-window. Finally, the performance of the identification algorithm designed in this paper is tested on a real-time underactuated system, specifically the double pendulum on a cart platform. Furthermore, a successful benchmarking between the algorithm herein and the traditional least-square method is reported.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference44 articles.

1. Parameter Identification and Adaptive Control of Carbon Nanotube Resonators;Asian J. Control.,2018

2. Multivariate Recursive Bayesian Linear Regression and Its Applications to Output-Only Identification of Time-Varying Mechanical Systems;J. Vib. Control,2020

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3