Diagonal Quadratic Approximation for Parallelization of Analytical Target Cascading

Author:

Li Yanjing1,Lu Zhaosong2,Michalek Jeremy J.3

Affiliation:

1. Stanford University, Stanford, CA

2. Simon Fraser University, Burnaby, BC, Canada

3. Carnegie Mellon University, Pittsburgh, PA

Abstract

Analytical Target Cascading (ATC) is an effective decomposition approach used for engineering design optimization problems that have hierarchical structures. With ATC, the overall system is split into subsystems, which are solved separately and coordinated via target/response consistency constraints. As parallel computing becomes more common, it is desirable to have separable subproblems in ATC so that each subproblem can be solved concurrently to increase computational throughput. In this paper, we first examine existing ATC methods, providing an alternative to existing nested coordination schemes by using the block coordinate descent method (BCD). Then we apply diagonal quadratic approximation (DQA) by linearizing the cross term of the augmented Lagrangian function to create separable subproblems. Local and global convergence proofs are described for this method. To further reduce overall computational cost, we introduce the truncated DQA (TDQA) method that limits the number of inner loop iterations of DQA. These two new methods are empirically compared to existing methods using test problems from the literature. Results show that computational cost of nested loop methods is reduced by using BCD and generally the computational cost of the truncated methods, TDQA and ALAD, are superior to other nested loop methods with lower overall computational cost than the best previously reported results.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3