Transient Pool Boiling of Water on a Vertical Surface With a Step in Heat Generation

Author:

Lurie Henry1,Johnson H. A.2

Affiliation:

1. University of California, Berkeley, Calif.

2. Mechanical Engineering, University of California, Berkeley, Calif.

Abstract

This paper is based on the PhD thesis investigation by H. Lurie [1] on the transient heat transfer from a vertical submerged metallic ribbon undergoing a step in Joule heating leading to boiling on its surface. The tests were made in deaerated distilled water at atmospheric pressure with pool temperatures at saturation and 112 deg F subcooled, and with heat generation rates per unit of ribbon surface area from nonboiling to 1.6 × 106 Btu/ft2hr. Although the heat capacity of the ribbon is low, the surface temperature overshoot compared to the steady-state temperature is minor with values of less than 10 deg F. The time required to reach this overshoot, or the time required to reach steady state, is very short and decreases with increasing heat flux. These values are short compared to Goldstein and Eckert [2] and Siegel’s [3] estimates of the time required to develop the hydro-dynamic and thermal boundary layers in natural convection, and indicate that nucleate boiling heat transfer is probably a weak function of the fluid circulation. Some further support for this is evidenced by calculated transient temperatures based on steady nucleate boiling heat transfer which are in reasonable agreement with the measured performance.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3