Rotational Buoyancy Effects on Heat Transfer in Five Different Aspect-Ratio Rectangular Channels With Smooth Walls and 45Degree Ribbed Walls

Author:

Fu Wen-Lung1,Wright Lesley M.1,Han Je-Chin1

Affiliation:

1. Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

Abstract

This paper experimentally studies the effects of the buoyancy force and channel aspect ratio (W:H) on heat transfer in two-pass rotating rectangular channels with smooth walls and 45deg ribbed walls. The channel aspect ratios include 4:1, 2:1, 1:1, 1:2, and 1:4. Four Reynolds numbers are studied: 5000, 10,000, 25,000, and 40,000. The rotation speed is fixed at 550rpm for all tests, and for each channel, two channel orientations are studied: 90deg and 45 or 135deg, with respect to the plane of rotation. The maximum inlet coolant-to-wall density ratio (Δρ∕ρ)inlet is maintained around 0.12. Rib turbulators are placed on the leading and trailing walls of the channels at an angle of 45deg to the flow direction. The ribs have a 1.59 by 1.59mm square cross section, and the rib pitch-to-height ratio (P∕e) is 10 for all tests. Under the fixed rotation speed (550rpm) and fixed inlet coolant-to-wall density ratio (0.12), the local buoyancy parameter is varied with different Reynolds numbers, local rotating radius, local coolant-to-wall density ratio, and channel hydraulic diameter. The effects of the local buoyancy parameter and channel aspect ratio on the regional Nusselt number ratio are presented. The results show that increasing the local buoyancy parameter increases the Nusselt number ratio on the trailing surface and decreases the Nusselt number ratio on the leading surface in the first pass for all channels. However, the trend of the Nusselt number ratio in the second pass is more complicated due to the strong effect of the 180deg turn. Results are also presented for this critical turn region of the two-pass channels. In addition to these regions, the channel averaged heat transfer, friction factor, and thermal performance are determined for each channel. With the channels having comparable Nusselt number ratios, the 1:4 channel has the superior thermal performance because it incurs the least pressure penalty.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference29 articles.

1. Gas Turbine Heat Transfer and Cooling Technology

2. Heat Transfer Around Sharp 180° Turns in Smooth Rectangular Channels;Metzger;ASME J. Heat Transfer

3. Fan, C. S., and Metzger, D. E., 1987, “Effects of Channel Aspect Ratio on Heat Transfer in Rectangular Passage Sharp 180° Turn,” ASME Paper No. 87-GT-113.

4. Local Heat/Mass Transfer in Distributions Around Sharp 180Deg. Turns in Two-Pass Smooth and Rib-Roughened Channels;Han;ASME J. Heat Transfer

5. Heat Transfer in Rotating Passage With Smooth Walls and Radial Outward Flow;Wagner;ASME J. Turbomach.

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3