Surface Effect in Nano-Scale Fretting Contact Problems

Author:

Xiao Sha1,Peng Zhilong1,Wu Hui1,Yao Yin1,Chen Shaohua1

Affiliation:

1. Beijing Institute of Technology Institute of Advanced Structure Technology; Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, , Beijing 100081 , China

Abstract

Abstract The fretting contact behavior of nanostructured materials is significantly influenced by the surface effect. A model of fretting contact between a nano-sized rigid cylindrical indenter and an elastic half-plane is established based on Gurtin–Murdoch (G–M) surface elasticity theory, with which the surface effects on the stress and displacement distributions and the size of stick region (no-slip region) in the contact zone are systematically studied. It is found that the surface effect induces an additional traction besides the external force applied by punch, which could help to smoothen the stress and displacement distributions. The normal surface-induced traction related to the residual surface stress is opposite to the externally applied compression, which results in a material stiffening in the contact zone so that the contact radius, normal displacement, and normal stress decrease compared with their classical counterparts. The tangential surface-induced traction is also opposite to the externally applied frictional stress, consequently leading to reductions of the shear stress and tangential displacement induced by friction in the contact zone. More interestingly, the surface effect leads to three possible states in the contact zone, including complete slip, partial slip, and complete stick, instead of the solely partial slip state in classical fretting contact models without surface effect. Among them, the complete stick due to the action of surface residual stress is more beneficial for inhibiting the wear of contact devices, which can be realized by reducing the indenter size. The present research does not only help one to better understand the physical mechanism in nano-scale fretting contact problems, but should also guide the anti-wear design in nano-electro-mechanical (NEMs) systems.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference71 articles.

1. A Review of MEMS Inertial Switches;Cao;Microsyst. Technol.,2019

2. Adaptive Controller Design for Mechanical Transmission Systems With Backlash;Anh,2016

3. Determination of Material Properties of Thin Films and Coatings Using Indentation Tests: A Review;Wen;J. Mater. Sci.,2017

4. Ueber die Berührung fester elastischer Körper;Hertz;J. Reine Angew. Math.,1882

5. Surface Energy and the Contact of Elastic Solids;Johnson;Proc. R. Soc. A,1971

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3