Modeling and Experimental Validation of Superconductor Tape Rolling

Author:

Pandheeradi M.1,Vaze S. P.1,Yuan D.-W.1,Kuhn H. A.2

Affiliation:

1. Concurrent Technologies Corporation (CTC), 100 CTC Drive, Johnstown, PA 15904-1935

2. C3 Industries LLC, 1525 Charleston Hwy, Orangeburg, SC 29116-2569

Abstract

Efficient, defect-free manufacturing of high-temperature superconducting (HTS) wires and tapes is critical to a variety of defense and electrical power applications. To contribute to the improvement of these manufacturing operations, an analytical and experimental study of the early stages of the multipass rolling process for transforming HTS wires into tapes was conducted. The rolling process was simulated by a three-dimensional (3D) finite element model that uses the Drucker-Prager Cap plasticity model to represent the powder core and a Von-Mises plasticity model with isotropic hardening to represent the silver sheath. The predicted cross-sectional geometry of the tapes is compared with experiments. The results show that the tape cross-sectional geometry and powder core sizes can be predicted accurately. Further, alternate boundary conditions were found to have minimal effect on the predicted cross-sectional geometry for the range of reductions considered, even though the frictional shear stress distributions were significantly different.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3