Lattice Boltzmann Modeling of Subcontinuum Energy Transport in Crystalline and Amorphous Microelectronic Devices

Author:

Escobar Rodrigo1,Smith Brian2,Amon Cristina32

Affiliation:

1. Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Santiago, Chile

2. Mechanical Engineering Department and Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, PA 15213

3. Fellow ASME

Abstract

Abstract Numerical simulations of time-dependent energy transport in semiconductor thin films are performed using the lattice Boltzmann method applied to phonon transport. The discrete lattice Boltzmann method is derived from the continuous Boltzmann transport equation assuming first gray dispersion and then nonlinear, frequency-dependent phonon dispersion for acoustic and optical phonons. Results indicate that a transition from diffusive to ballistic energy transport is found as the characteristic length of the system becomes comparable to the phonon mean free path. The methodology is used in representative microelectronics applications covering both crystalline and amorphous materials including silicon thin films and nanoporous silica dielectrics. Size-dependent thermal conductivity values are also computed based on steady-state temperature distributions obtained from the numerical models. For each case, reducing feature size into the subcontinuum regime decreases the thermal conductivity when compared to bulk values. Overall, simulations that consider phonon dispersion yield results more consistent with experimental correlations.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference39 articles.

1. Nanoscale Thermal Transport;Cahill;J. Appl. Phys.

2. Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-on—Insulator Transistors;Narumanchi;ASME J. Heat Transfer

3. Boltzmann Transport Equation-based Thermal Modeling Approaches for Hotspots in Microelectronics;Narumanchi;Heat Mass Transfer

4. ITRS, 2003, International Technology Roadmap for Semiconductors, ITRS 2003 Update, http://public.itrs.net/

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3