Effect of Solar Panel on Performance of Spacecraft Body-Mounted Fluid Tube Radiator

Author:

Che Bangxiang1,Han Haiying1,Wu Xianlin1,Huang Lei1,Zheng Hongyang1

Affiliation:

1. Beijing Key Laboratory of Space, Thermal Control Technology Beijing Institute of Spacecraft System Engineering, , Beijing 100094 , China

Abstract

Abstract The body-mounted fluid tube radiator (BMFTR) is a highly efficient heat rejection device for spacecraft. However, the heat rejection rate of the BMFTR is negatively impacted by the presence of solar panels mounted on the exterior of the spacecraft. In this study, a heat transfer model for the BMFTR was developed, and a simulation method was created to investigate the effect of solar panels on the radiator’s performance. The accuracy of both the heat transfer model and simulation method was verified using on-orbit data from the China Tianhe module. It was found that external heat is absorbed by the solar panels, which in turn reduces the performance of the radiator. Furthermore, the decrease in the heat rejection rate was quantitatively evaluated, and it was found to be closely related to the spacecraft’s attitude and the view factor between the solar panel and the radiator. The findings of this study on the impact of solar panels on the BMFTR’s performance are meaningful for future research on spacecraft radiators and on-orbit operations.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3