Affiliation:
1. U.S. Food and Drug Administration , Silver Spring, MD 20993
Abstract
Abstract
The results of in vitro dynamic thrombogenicity testing of biomaterials and medical devices can be significantly impacted by test conditions. To develop and standardize a robust dynamic in vitro thrombogenicity tool, the key test parameters need to be appropriately evaluated and optimized. We used a flow loop test system previously developed in our laboratory to investigate the effects of sample length and the number of samples per test loop on the thrombogenicity results. Porcine blood heparinized to a donor-specific target concentration was recirculated at room temperature through polyvinyl chloride (PVC) tubing loops containing test materials for 1 h at 200 mL/min. Four test materials (polytetrafluoroethylene (PTFE), latex, PVC, and silicone) with various thrombotic potentials in two sample lengths (12 and 18 cm) were examined. For the 12-cm long materials, two different test configurations (one and two samples per loop) were compared. Thrombogenicity was assessed through percent thrombus surface coverage, thrombus weight, and platelet count reduction in the blood. The test system was able to effectively differentiate the thrombogenicity profile of the materials (latex > silicone > PVC ≥ PTFE) at all test configurations. Increasing test sample length by 50% did not significantly impact the test results as both 12 and 18 cm sample lengths were shown to equally differentiate thrombotic potentials between the materials. The addition of a second test sample to each loop did not increase the test sensitivity and may produce confounding results, and thus a single test sample per loop is recommended.
Subject
Biomedical Engineering,Medicine (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献