Investigation of the Effect of Porous Material on the Flow and Temperature Patterns of a Passive Solar Air Heater

Author:

Kumar Digpal1,Premachandran B.1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India

Abstract

Abstract In this work, the effect of flow resistance due to the presence of porous medium representing agricultural products at the exit of free convection-based solar air heater is studied experimentally and numerically. An air heater, along with the drying chamber, is designed as an inclined channel to conduct the experiments. Constant heat flux condition is provided by electrical heating on the top absorber plate of the channel. Experiments are conducted for heat flux ranging from 250 to 750 W/m2 for the channel inclination angle of 30 deg. Porous material bed height is also varied in the drying chamber, while porosity is set at 0.36. The surface-to-surface radiation model is considered for modeling of heat transfer within the flow. For all the heat flux values considered in the experiments, numerical simulations are performed at three different angles of inclinations of 15 deg, 30 deg, and 45 deg. In this analysis, the temperature distribution in the channel wall, the flow pattern, the difference in the mass flowrate, and temperature of the outlet air are investigated with different heights of the porous medium.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal analysis of a new double-pass solar air heater using perforated absorber and porous materials: An experimental study;Thermal Science and Engineering Progress;2023-02

2. Efficient design of a wavy channel embedded with porous media for solar air heating;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2020-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3