Conjugate Heat Transfer and Flow Features of Single-Hole and Combined-Hole Film Cooling With Rib-Roughened Internal Passages

Author:

Zhu Rui12,Li Shulei34,Xie Gongnan35

Affiliation:

1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;

2. Research & Development Institute of Northwestern Polytechnical, University in Shenzhen, Shenzhen 518057, China

3. Research & Development Institute of Northwestern Polytechnical, University in Shenzhen, Shenzhen 518057, China;

4. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China

5. School of Marine Science and Technology, Northwestern Polytechnical University, P.O. Box 24, Xi'an 710072, China

Abstract

Abstract Internal cooling and film cooling, as two main cooling methods in modern gas turbines, work together to protect the high-temperature components of gas turbines. This paper presents the results of a computational study on cooling performance for a flat plate with both film cooling and internal cooling using a conjugate heat transfer analysis. Three internal delivery channel geometries, smooth channel, channel roughened by square ribs (SR), and channel roughened by crescent ribs (CR), are studied with two film cooling geometries, cylindrical hole, and sister holes (SS). The respective conjugate cooling performances are compared. Detailed flow and heat transfer characteristics are presented and discussed. Results show that both film cooling effectiveness and internal cooling performances are influenced by the delivery channel geometry near the hole inlets. The sink flow effects of film cooling enhance the heat transfer coefficient near the film cooling hole inlet. At the same time, film cooling performance is affected by the internal channel as the flow inside the film cooling hole is influenced by the ribs near the hole inlets. When using sister holes, ribs in the internal channels make the anti-kidney vortex structure created by sister holes more effective by changing the mass flow distribution among the three holes.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3