Importance of Preferential Segregation by Aerodynamics in Dust Rig Tests

Author:

Miranda Cairen1,Palmore John1ORCID

Affiliation:

1. Department of Mechanical Engineering, Virginia Tech , Blacksburg, VA 24061

Abstract

Abstract This work studies a particle injection rig to understand how its design affects particle impingement and rebound from a target plate. The motivation behind this study is to understand how dust ingestion affects aviation gas-turbine engines. The particles are injected into a constant area duct upstream of the plate, and they exit through a converging nozzle. The major result concerns how particles respond differently to changes in the flow field based on their diameter. Near the plate, small particles follow the flow streamlines which causes them to both significantly slow down and to disperse in all directions. However, large particles move ballistically, so they impact the plate with nearly the same velocity and orientation they had at the duct exit. Reynolds-averaged Navier–Stokes (RANS) simulations are compared to large eddy simulation (LES). While RANS are capable of predicting mean particle impact statistics, they display narrower statistical variation than LES, suggesting that particle dispersion is underpredicted in RANS.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3