Optimization of Dimensions of Smooth and Twisted-Tape-Inserted Tubes for Heat Transfer with NaCl/KCl/MgCl2 Molten Salts by Principle of Entropy Generation Minimization

Author:

Haddad Fouad1,Li Peiwen1

Affiliation:

1. University of Arizona Department of Aerospace and, Mechanical Engineering, , Tucson, AZ 85721

Abstract

Abstract The entropy generation minimization principle is used as the criterion to optimize the flow and heat transfer of solar collectors and heat exchangers that use molten salts NaCl–KCl–MgCl2 and KCl–MgCl2. The Gnielinski correlation for the Nusselt number versus Reynolds number, as well as the Moody friction factor given by Petukhov, was used for the calculation of the convective heat transfer coefficient and pressure loss due to friction in smooth tubes. For twisted-tap-inserted tube, equations of Nu and friction factor provided by Manglik and Bergles were used. The objective function, the entropy generation rate of the heat transfer system, was expressed as the function of Reynolds number, Prandtl number, heating flux, tube diameter, etc. As a result of the analysis, the optimum Reynolds number was determined and thereby to determine the optimum Nusselt number, convective heat transfer coefficient, friction factor, and tube diameter, which also allows the calculation of optimum flow velocity. The analysis was conducted in the fluid temperature range of 500–700 °C, which covers the operation temperature for supercritical CO2 power cycles in concentrated solar power (CSP) system. Optimized results from the smooth tube and twisted-tap-inserted tube are compared, which is important to the design of solar receivers for CSP systems.

Funder

Solar Energy Technologies Program

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference34 articles.

1. Optimization of Parabolic Trough Solar Collectors;Rabl;Sol. Energy,1982

2. Simulation of Incident Solar Power Input to Fixed Target of Central Receiver System in Malaysia;Gamil,2013

3. Chen, G. , 2020, “Optimization of Blockage on Solar Panel Systems and Concentrated Solar Power (CSP) Systems,” Master thesis, Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3