An Adaptive Curvature-Guided Approach for the Knot-Placement Problem in Fitted Splines

Author:

Aguilar Enrique1,Elizalde Hugo1,Cárdenas Diego1,Probst Oliver2,Marzocca Pier3,Ramirez-Mendoza Ricardo A.2

Affiliation:

1. School of Engineering and Science, Tecnológico de Monterrey, Tlalpan, Mexico City 14380, Mexico e-mail:

2. School of Engineering and Science, Tecnológico de Monterrey, Monterrey 64849, Nuevo Leon, Mexico e-mail:

3. Aerospace, Mech. & Manuf. Eng. Department, RMIT University, P.O. Box 71, Bundoora 3083, Victoria, Australia e-mail:

Abstract

This paper presents an adaptive and computationally efficient curvature-guided algorithm for localizing optimum knot locations in fitted splines based on the local minimization of an objective error function. Curvature information is used to narrow the searching area down to a data subset where the local error function becomes one-dimensional, convex, and bounded, thus guaranteeing a fast numerical solution. Unlike standard curvature-guided methods, typically relying on heuristic rules, the novel method here presented is based on a phenomenological approach as the error function to be minimized represents geometrical properties of the curve to be fitted, consequently reducing case-sensitivity issues and the possibility of defining spurious knots. A knot-readjustment procedure performed in the vicinity of a newly created knot has the ability of dispersing knots from otherwise highly knot-populated regions, a feature known to generate undesired local oscillations. The performance of the introduced method is tested against three other methods described in the literature, each handling the knot-placement problem via a different paradigm. The quality of the fitted splines for several datasets is compared in terms of the overall accuracy, the number of knots, and the computing efficiency. It is demonstrated that the novel algorithm leads to a significantly smaller knot vector and a much lower computing time, while preserving or improving the overall accuracy.

Funder

National Science Foundation

Consejo Nacional de Ciencia y Tecnología

New York State Energy Research and Development Authority

Instituto Tecnológico y de Estudios Superiores de Monterrey

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3