Design, Modeling, and Experimental Characterization of A Valveless Pulsatile Flow Mechanical Circulatory Support Device

Author:

Li Mengtang1,Chen Ye2,Slepian Marvin J.3,Howard Joseph1,Thomas Seth1,Barth Eric J.1

Affiliation:

1. Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235

2. Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA 95053

3. Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85724; Department of Medicine, University of Arizona, Tucson, AZ 85724; Sarver Heart Center, University of Arizona, Tucson, AZ 85724

Abstract

Abstract Mechanical circulatory support (MCS) devices, i.e., ventricular assist devices (VADs) and total artificial hearts (TAHs), while effective and vital in restoring hemodynamics in patients with circulatory compromise in advanced heart failure, remain limited by significant adverse thrombotic, embolic and bleeding events. Many of these complications relate to chronic exposure, via these devices, to nonpulsatile flow and the high shear stress created by current methods of blood propulsion or use of prosthetic valves. Here we propose a novel noncompressing single sliding vane MCS device to: 1) dramatically reduce pump operating speed thus potentially lowering the shear stress imparted to blood; 2) eliminate utilization of prosthetic valves thus diminishing potential shear stress generations; 3) allow direct flow rate control to generate physically desired blood flow rate include pulsatile flow; and 4) achieve compactness to fit into the majority of patients. The fundamental working principle and governing design equations are introduced first with multiple design and performance objectives presented. A first prototype was fabricated and experimental tests were conducted to validate the model with a 93.10% match between theoretical and experimental flow rate results. After model validation, the proposed MCS was tested to illustrate the ability of pulsatile flow generation. Finally, it was compared with some representative MCS pumps to discuss its potential of improving current MCS design. The presented work offers a novel MCS design and paves the way for next steps in device hemocompatibility testing.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Reference33 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and evaluation of a pulsatile flow rotary vane blood pump;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3