Demand Side Electric Energy Consumption Optimization in a Smart Household Using Scheduling and Model Predictive Temperature Control

Author:

Taik Salma1,Kiss Bálint1

Affiliation:

1. Department of Control Engineering and Information Technology Budapest, University of Technology and Economics, Budapest 1111, Hungary

Abstract

Abstract Utility companies seek to increase energy efficiency and productivity and try to reduce peak loads. This often involves consumer-side demand management in residential areas using dynamic time-of-use (ToU) tariff. Such strategies work if the consumer-side response is at least partly automated using some real-time optimization strategy. Our paper proposes a consumer-side optimization and control framework for scheduling the electric appliances in a smart household and preserving a thermal comfort level through an electric heating system. Our framework consists of two optimization components interacting with each other. The first optimization component schedules the home appliances based on a mixed integer programming approach. An electric vehicle (EV) is considered as a special home appliance with an energy storage capability. The second optimization component is the model predictive control (MPC) strategy for the electric heating system, such that the input constraints are defined by the scheduling results of the first component. Due to outside temperature variations, the input constraints may impede the MPC to maintain the required thermal comfort, which triggers a rescheduling event for the first component. The efficiency of the framework is presented in multiple simulations for scenarios with different consumer behaviors.

Funder

Emberi Eroforrások Minisztériuma

National Research, Development and Innovation Office

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3