Trabecular Bone Loss at a Distant Skeletal Site Following Noninvasive Knee Injury in Mice

Author:

Christiansen Blaine A.12,Emami Armaun J.13,Fyhrie David P.13,Satkunananthan Patrick B.13,Hardisty Michael R.13

Affiliation:

1. Department of Orthopaedic Surgery, University of California-Davis Medical Center, 4635 2nd Avenue, Suite 2000, Sacramento, CA 95817;

2. Biomedical Engineering Graduate Group, University of California-Davis, Davis, CA 95616 e-mail:

3. Biomedical Engineering Graduate Group, University of California-Davis, Davis, CA 95616

Abstract

Traumatic injuries can have systemic consequences, as the early inflammatory response after trauma can lead to tissue destruction at sites not affected by the initial injury. This systemic catabolism may occur in the skeleton following traumatic injuries such as anterior cruciate ligament (ACL) rupture. However, bone loss following injury at distant, unrelated skeletal sites has not yet been established. In the current study, we utilized a mouse knee injury model to determine whether acute knee injury causes a mechanically significant trabecular bone loss at a distant, unrelated skeletal site (L5 vertebral body). Knee injury was noninvasively induced using either high-speed (HS; 500 mm/s) or low-speed (LS; 1 mm/s) tibial compression overload. HS injury creates an ACL rupture by midsubstance tear, while LS injury creates an ACL rupture with an associated avulsion bone fracture. At 10 days post-injury, vertebral trabecular bone structure was quantified using high-resolution microcomputed tomography (μCT), and differences in mechanical properties were determined using finite element modeling (FEM) and compressive mechanical testing. We hypothesized that knee injury would initiate a loss of trabecular bone structure and strength at the L5 vertebral body. Consistent with our hypothesis, we found significant decreases in trabecular bone volume fraction (BV/TV) and trabecular number at the L5 vertebral body in LS injured mice compared to sham (−8.8% and −5.0%, respectively), while HS injured mice exhibited a similar, but lower magnitude response (−5.1% and −2.5%, respectively). Contrary to our hypothesis, this decrease in trabecular bone structure did not translate to a significant deficit in compressive stiffness or ultimate load of the full trabecular body assessed by mechanical testing or FEM. However, we were able to detect significant decreases in compressive stiffness in both HS and LS injured specimens when FE models were loaded directly through the trabecular bone region (−9.9% and −8.1%, and 3, respectively). This finding may be particularly important for osteoporotic fracture risk, as damage within vertebral bodies has been shown to initiate within the trabecular bone compartment. Altogether, these data point to a systemic trabecular bone loss as a consequence of fracture or traumatic musculoskeletal injury, which may be an underlying mechanism contributing to increased risk of refracture following an initial injury. This finding may have consequences for treatment of acute musculoskeletal injuries and the prevention of future bone fragility.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3