Analysis of Power Plant Safety and Relief Valve Vent Stacks

Author:

Liao G. S.1

Affiliation:

1. Los Angeles Power Division, Bechtel Power Corp., Los Angeles, Calif.

Abstract

Power plant safety and relief value vent stacks have generally been sized according to the methods and design criteria published by Max W. Benjamin in the 1940s. Although the method might have been satisfactory at that time utilizing basic flow dynamics, it not only requires laborious calculations, but also contains some inadequate approaches which may contradict the theory of compressible fluid mechanics available today. This paper presents a complete analysis of steam conditions and its properties from power plant safety/relief valve inlet through its vent stack to the atmosphere. The analysis is based on the theory of compressible fluid flow under irreversible adiabatic process to establish a method and criterion for vent stack design. The method developed herein is applicable to both choking and nonchoking conditions at the valve exit and/or vent stack outlet, and greatly reduces complex trial-and-error solution. Furthermore, an accurate determination of fluid conditions will facilitate the calculation of reaction forces on safety/relief valve and its stack. This paper also presents the results of sensitivity analyses to verify the validity of applying perfect gas equations to steam.

Publisher

ASME International

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3