Unusually Effective Nanofiller a Contradiction of Microfiller-Specific Mechanisms of PTFE Composite Wear Resistance?

Author:

Bhargava Suvrat1,Blanchet Thierry A.2

Affiliation:

1. Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180

2. Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 e-mail:

Abstract

Wear rates of polytetrafluoroethylene (PTFE) filled with micrometer- and nanometer-sized particles of copper, silicon nitride, and γ-phase alumina were measured under dry sliding conditions using a pin-on-plate tribometer. In their ability to limit the wear rate, micrometer-sized copper particles were found to be better than their nanometer-sized counterparts, though by only small margins, with a 20 wt.% loading of the micrometer-sized copper particles resulting in a tenfold reduction in the wear rate over that of unfilled PTFE. With 10 wt.% loading of micrometer-sized particles of silicon nitride and γ-phase alumina, very low wear rates of ∼5 × 10−7 mm3/N·m and ∼2.5 × 10−7 mm3/N·m, respectively, were measured. Wear rate of unfilled PTFE under the same testing conditions, also measured here, was found to be about 3.6 × 10−4 mm3/N·m. In all the three cases (copper, silicon nitride, and γ-phase alumina), wear resistance was either lost fractionally or completely when the size of the filler particles was reduced from the microscale to a few tens of nanometers, with nanoscale silicon nitride filler resulting in even slightly higher wear rates and larger platelike wear debris than unfilled PTFE. Micrographs of the wear tracks and the generated wear debris seem to indicate that all three filler materials in the form of more effective larger microparticles reduce wear by a common mechanism of interrupting wear debris production and limiting wear debris size, further supporting Tanaka and Kawakami's 1982 proposal of a broad general mechanism of PTFE wear reduction by filler particles having at least a requisite microscale size. Recent reports of extreme PTFE wear resistance imparted by few limited nanofiller particles appear to be reflective of an additional wear reduction mechanism they may specifically possess, rather than a contradiction of previously proposed microparticle wear reduction mechanisms.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3