Simulation of Flow and Heat Transfer in Triangular Cross-Sectional Solar-Assisted Air Heater

Author:

Kumar Rajneesh1,Kumar Anoop2,Goel Varun3

Affiliation:

1. Mechanical Engineering Department, National Institute of Technology, Hamirpur 177005, HP, India e-mails: ;

2. Professor Mechanical Engineering Department, National Institute of Technology, Hamirpur 177005, HP, India e-mail:

3. Mechanical Engineering Department, National Institute of Technology, Hamirpur 177005, HP, India e-mail:

Abstract

The ribbed three-dimensional solar air heater (SAH) model is numerically investigated to estimate flow and heat transfer through it. The numerical analysis is based on finite volume approach, and the set of flow governing equations has been solved to determine the heat transfer and flow field through the SAH. For detailed analysis, rib chamfer height ratio (e′/e) and rib aspect ratio (e/w), two innovative parameters, have been created and considered along with the commonly used roughness parameter, i.e., relative roughness height, e/D. The parameters e′/e, e/w, and e/D are varied from 0.0 to 1, 0.1 to 1.5, and 0.18 to 0.043, respectively, but the value of P/e is kept constant for the entire investigation at 12. A good match is seen in Nusselt number (Nu) and friction factor (f) by comparing the predicted results with the experimental ones. With the variation of roughness parameters, distinguishable change in Nu and f is obtained. The highest value of thermohydraulic performance parameter (TPP) observed is 2.08 for P/e, e′/e, e/w, and e/D values of 12, 0.75, 1.5, and 0.043, respectively, at Re of 17,100. The developed generalized equation for Nu and f has shown acceptable percentage deviation under the studied range of parameters.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3