Affiliation:
1. Research Laboratories, Allis-Chalmers Manufacturing Company, Milwaukee, Wis.
Abstract
A study was made to determine effects of trailing-edge geometry on the vortex-induced vibrations of a model blade designed to simulate the conditions at the trailing edge of a hydraulic-turbine blade. For the type of trailing-edge flow encountered, characterized by a thick boundary layer relative to the blade thickness, the vortex-shedding frequency could not be represented by any modification of the Strouhal formula. The amplitude of the induced vibrations increased with the strength of a vortex in the von Karman vortex street of the wake; one exception was provided by a grooved edge, which is discussed in some detail. For a particular approach velocity, the vortex strength is primarily a function of the ratio of distance between separation points to boundary-layer thickness, the degree of “shielding” between regions of vortex growth, and frequency of vortex shedding.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献