Response of Systems With Damping Materials Modeled Using Fractional Calculus

Author:

Suarez L.1,Shokooh A.1

Affiliation:

1. General Engineering Department, University of Puerto Rico-Mayaguez Campus, Mayaguez, Puerto Rico 00681-5000

Abstract

The mathematical modeling of damping materials based on fractional calculus has been shown to be very effective in representing the frequency dependence of the properties of these materials. In this model, the integer order derivatives in the constitutive equations of the Kelvin model are replaced by derivatives of fractional order. In this paper, we examine the response of a single degree-of-freedom system in which the damping force is proportional to a derivative of order α < 1 of the displacements. Three methods are proposed to obtain the response: the Laplace and Fourier transform methods, and an operator method that results in a series solution. Some interesting features exhibited by the oscillator’s response due to the fractional representation of the damping are unveiled.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3