Maximum Wall Stress on a Smooth Flat Plate Under Planar Jet Impingement

Author:

Wei Tie1,Wang Yanxing2,Tu Cat Vo3,Wood David4

Affiliation:

1. Department of Mechanical Engineering, New Mexico Institute of Mining and Technology, Socorro, NM 87801

2. Department of Mechanical Engineering, New Mexico State University, Las Cruces, NM 88003

3. BlueScope Steel Research, Port Kembla, New South Wales 2519, Australia

4. Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2 L 1Y6, Canada

Abstract

Abstract This paper investigates the maximum wall shear stress value τmax and its location xmax as measured on a smooth flat plate impinged upon by a normal planar jet. τmax and xmax are found to be closely related to the stagnation pressure Ps and the half-width of the mean wall pressure profile bpw. The measurements were made by two different techniques: a Stanton probe and oil film interferometry. The maximum wall shear stress location xmax is found to be independent of the jet Reynolds number. At a small nozzle-to-plate distance H≲6 Djet, xmax is related to the jet slot width as xmax≈1.1Djet. At a large nozzle-to-plate distance H≳6 Djet, the maximum wall shear stress location is related to the mean wall pressure half-width as xmax≈1.4 bpw. A new Reynolds number, referred to as the stagnation Reynolds number, is defined as Res=def2bpwPs/ρ/ν, where ρ is the fluid density and ν is the kinematic viscosity. The maximum wall shear stress is found to be strongly influenced by the stagnation Reynolds number, and the dependence as measured by Stanton probes is approximated by a power law of τmax/Ps≈0.38/Res0.38. The solution of the laminar flow equations in the Appendix gives an alternate relation for τmax, which is in better agreement with the oil film interferometry measurements. Dimensional analysis is performed to gain insight into the empirical findings.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3