Inverse Solution for Bolt Preload Using Surface Deformation

Author:

Zaki A.1,Nassar S. A.2,Kruk S.3,Shillor M.3

Affiliation:

1. Department of Mechanical Engineering, Fastening and Joining Research Institute (FAJRI), Oakland University, Rochester, MI 48309

2. Fellow ASME Department of Mechanical Engineering, Fastening and Joining Research Institute (FAJRI), Oakland University, Rochester, MI 48309

3. Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309

Abstract

In this paper, an inverse biharmonic axisymmetric elasticity problem is solved by invoking measured out-of-plane surface deformation values at discrete locations around a preloaded bolt head, in order to calculate the underhead contact stress and joint clamp load that would have caused that out-of-plane surface deformation. Solution of this type of inverse problem promises to improve the automation process of bolted joint system assembly, especially in critical and safety-related applications. For example, a real-time optically measured joint surface deformation can be utilized for automating process control of bolted joint assembly in a reliable fashion. This would be a significant reliability improvement as compared to the commonly used method in mass production using torque-only control method in which there is wide scatter in the torque–tension correlation due to the normal scatter in frictional variables. Finite element analysis (FEA) method is used to validate the inverse problem solution provided in this paper.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis and determination of bolt tightening process factors for composite structures under multiple working conditions;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-06-13

2. Research on the relationship between the tightening torque and the preload of composite bolted structures;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3