Free Response of a Rotational Nonlinear Energy Sink: Complete Dissipation of Initial Energy for Small Initial Rectilinear Displacements

Author:

Ding Ke1,Pearlstein Arne J.1

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801

Abstract

Abstract For two combinations of a dimensionless rotational damping parameter and a dimensionless inertial coupling parameter, we consider free response of a rectilinearly vibrating linearly sprung primary mass inertially coupled to damped rotation of a second mass, for which Gendelman et al. (2012, “Dynamics of an Eccentric Rotational Nonlinear Energy Sink,” ASME J. Appl. Mech. 79(1), 011012) developed equations of motion in the context of a rotational nonlinear energy sink (NES) with no direct damping of the rectilinear motion. For dimensionless initial rectilinear displacements comparable with those considered by Gendelman et al., we identify a region in the motionless projection of the initial condition space (i.e., for zero values of the initial rectilinear and rotational velocities) in which every initial condition leads to a previously unrecognized zero-energy solution, with all initial energy dissipated by rotation. We also show that the long-time nonrotating, rectilinear solutions of the type found by Gendelman et al. are (orbitally) stable only in limited ranges of amplitude. Finally, we show how direct viscous damping of rectilinear motion of the primary mass affects dissipation, and that results with no direct rectilinear dissipation provide excellent guidance for performance when direct rectilinear dissipation occurs. Some applications are discussed.

Funder

National Science Foundation

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3