Theoretical Analysis of Textured “Damper” Annular Seals

Author:

Arghir M.1,Billy F.2,Pineau G.3,Frěne J.1,Texier A.3

Affiliation:

1. Laboratoire de Mécanique des Solides, Université de Poitiers, Téléport 2-SP2MI, Boulevard Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France

2. Laboratoire de Mécanique des Solides, Laboratoire d’Etudes Aérodynamiques, Université de Poitiers, Téléport 2-SP2MI, Boulevard Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France

3. Laboratoire d’Etudes Aérodynamiques, Université de Poitiers, Téléport 2-SP2MI, Boulevard Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France

Abstract

The present work presents a theoretical approach for the analysis of textured annular “damper” seals. The data for the seal were extracted from the work of Childs and Fayolle (ASME J. Tribol. 121(1), pp. 42–49). The texture of the stator consists of equally spaced cylindrical holes of an order of magnitude larger than the seal clearance. The main idea of the present work is that the static and dynamic characteristics of the textured annular seal can be predicted by using a slightly modified bulk-flow model. The modifications are introduced by considering the textured seal as being geometrically similar to a straight seal with the same clearance. The presence of the texture is taken into account by considering modified friction laws for the rotor and for the stator, separately. An additional inertia effect due to the texture is also added as a source term to the momentum equations. The modified friction laws and the inertia effect are deduced from a three-dimensional Navier-Stokes analysis of the flow in the textured seal. This computational analysis is carried on for a single texture element extracted from the round-hole pattern of stator by using periodicity boundary conditions. The stiffness and the damping of the annular seal were calculated by using the modified bulk-flow model and results were compared with the experimental data from Childs and Fayolle. The use of the present model shows a net improvement of the predictions for the direct and cross-coupling stiffness and for the cross-coupling damping. The results obtained for the direct damping are still under discussion.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3