Critical Heat Flux (CHF) of Subcooled Flow Boiling of Alumina Nanofluids in a Horizontal Microchannel

Author:

Vafaei Saeid1,Wen Dongsheng1

Affiliation:

1. School of Engineering and Materials Science, Queen Mary University of London, E1 4NS, London, UK

Abstract

This work investigates subcooled flow boiling of aqueous based alumina nanofluids in 510 μm single microchannels with a focus on the effect of nanoparticles on the critical heat flux. The surface temperature distribution along the pipe, the inlet and outlet pressures and temperatures are measured simultaneously for different concentrations of alumina nanofluids and de-ionized water. To minimize the effect of nanoparticle depositions, all nanofluid experiments are performed on fresh microchannels. The experiment shows an increase of ∼51% in the critical heat flux under very low nanoparticle concentrations (0.1 vol %). Different burnout characteristics are observed between water and nanofluids, as well as different pressure and temperature fluctuations and flow pattern development during the stable boiling period. Detailed observations of the boiling surface show that nanoparticle deposition and a subsequent modification of the boiling surface are common features associated with nanofluids, which should be responsible for the different boiling behaviors of nanofluids.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3