Research on Parasitic Power of Cooling Balance of Plant System for Proton Exchange Membrane Fuel Cell

Author:

Chang Guofeng1,Xie Chengyu1,Cui Xian1,Wei Pengnan1

Affiliation:

1. Tongji University Clean Energy Automotive Engineering Center; School of Automotive Studies, , Shanghai 200070 , China

Abstract

AbstractIn high-power systems of proton exchange membrane fuel cells (PEMFC), cooling systems for the balance of plants (BOP) play an extremely important role in maintaining the temperature of the key components of the fuel cell system. To evaluate the effect of the PEMFC BOP cooling system on the fuel cell system efficiency, a Simulink model of the fuel cell system and an AMEsim model of the cooling system for the BOP system are established based on experimental data. A co-simulation is conducted based on the established models to determine the effects of fuel cell stack output power, coolant flowrate, radiator fan speed, and temperature control strategies on the parasitic power consumption and fuel cell system efficiency. The simulation results show that with an increase in the stack output power, coolant flowrate, and radiator fan speed, the parasitic power of the BOP cooling system increases and the system efficiency of PEMFC decreases. With an increase in the opening temperature of the radiator fan, the parasitic power of the BOP cooling system decreases and the system efficiency of the PEMFC increases. Compared with the rule-based control strategy, the radiator fan speed control strategy based on the PID controller achieves lower parasitic power. The research presented in this paper is helpful for further development of efficient fuel cell vehicle thermal management system.

Funder

National key scientific instrument and equipment development project of China

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3