View Factors to Grounds of Photovoltaic Collectors

Author:

Appelbaum J.1

Affiliation:

1. School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel e-mail:

Abstract

Ground reflected radiation is one component of the global radiation on photovoltaic collectors in a solar field. This component depends on the view factor of the collector to ground, hence depends on the relative position of the collectors to each other. General analytical expressions and numerical values for the view factor to the ground were developed between flat-plate collectors positioned in a general configuration. Based on the general expression, the view factors to ground for particular collector configurations were derived. For deployment of photovoltaic collectors in multiple rows with common inclination angles, the view factor to ground is rather small, and hence, the reflected radiation from the ground on the collectors may be neglected compared to the direct beam and the diffuse components. However, in some cases the reflected radiation from the ground may constitute an appreciable amount as in snowy area. Bifacial photovoltaic (PV) panels can absorb solar radiation by both the front and the rear sides and are usually deployed vertically. In this case the reflected radiation from the ground on the panels may be appreciable depending on the ground albedo. The mathematical expressions of the different view factors may be used by the solar field designer to estimate the amount of reflected radiation from the ground reaching the collectors for different configurations of solar PV plants.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference11 articles.

1. Bifacial PV Modules: Can They Move Beyond BIPV Applications?;Energy Technology and Engineering,2014

2. Effects of Spectral Albedo on Solar Photovoltaic Devices;Sol. Energy Mater. Sol. Cells,2014

3. Empirical Validation of Models to Compute Solar Irradiance on Inclined Surfaces for Building Energy Simulation;Sol. Energy,2007

4. Shading Effect of Collector Row Tilt Toward the Equator;Sol. Energy,1981

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3