Conversion of Thermally Amplified Hydraulic Shock for Power Generation: Modeling and Experimental Analyses

Author:

Abebe Ashenafi1,Tadesse Yilma2,Beyene Asfaw3

Affiliation:

1. Debre Berhan University (DBU) Department of Mechanical Engineering, , Debre Berhan , Ethiopia

2. AAiT/AAU School of Mechanical and Industrial Engineering, , Addis Ababa , Ethiopia

3. San Diego State University Department of Mechanical Engineering, , San Diego, CA 92182

Abstract

Abstract Hydraulic shock, also colloquially known as hydram, or hydraulic ram pump, or water hammer, or fluid hammer is a high-pressure shock wave that propagates at the speed of sound through a piping system when a fluid in motion is forced to change direction or stop abruptly. This destructive force can be converted into useful work, i.e., to pump the water to higher elevation, thereby increasing its potential energy, i.e., lifts the water using the high-pressure shockwave. Its low performance combined with affordability of fuels has put this otherwise longstanding technology in the backburner of science and research for a long time, yielding to electric or fuel powered pumps. However, growing concerns about the impacts of fossil fuel use on the environment as well as the rising price of electricity has generated a renewed interest in such technology. The ram pump’s operation in remote areas where the power grid is not available adds research value to the technology. In this paper, a novel approach, i.e., adding thermal energy to the flow to assist the water hammer pressure was modeled. Computational fluid dynamics (CFD) simulations were conducted using ansys. The results were validated experimentally in a 32 mm (27 mm internal diameter) drive pipe and a supply head of 2.18 m ram pump. The exhaust pressure can also be used to produce power using a hydraulic turbine, hence our claim of multi-purpose application as a theme of this project. The results between simulation and experiment were consistent, with only 6.99% error for pressure, and 10.16% for flowrate. The results show that pressure increased from 183.33 kPa to 342.32 kPa when thermally assisted to reach 106.75 °C. The experimental discharge flow increased from 11.72 l/min to 16.41 l/min for the corresponding temperature, a 42.01% increase. The system in power mode produced 91.28 W and 35.81 W with and without thermal infusion, respectively. The Rankine efficiency of thermally assisted hydraulic ram for combined application was above 10% whereas with power generation only, the efficiency was 1.4% at a net delivery head of 5 m for both scenarios. It was observed that in general, the efficiency increases proportionally with delivery flow.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference35 articles.

1. Investigation and Analysis on the Performance of Hydraulic Ram Pump at Various Design Its Snifter Valve;Sucipta,2019

2. Design and Hydraulic Performance of a Novel Hydraulic Ram Pump;Yang,2014

3. Optimal Design and Performance Analysis of Hydraulic Ram Pump System;Guo;Proc. Inst. Mech. Eng. A: J. Power Energy,2018

4. On the Measurement of Ram-Pump Power by Changing in Water Hammer Pressure Wave Energy;Fatahi-Alkouhi;Ain Shams Eng. J.,2019

5. Generating Renewable Power From Water Hammer Pressure Surges;Roberts;Renew. Energy,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3