Biomechanical in Vitro and Finite Element Study On Different Sagittal Alignment Postures of the Lumbar Spine During Multiaxial Daily Motion

Author:

Wilmanns Nadja1,Beckmann Agnes1,Nicolini Luis Fernando1,Herren Christian2,Sobottke Rolf3,Hildebrand Frank2,Siewe Jan4,Kobbe Philipp2,Markert Bernd1,Stoffel Marcus1

Affiliation:

1. Institute of General Mechanics, RWTH Aachen University, Eilfschornsteinstraße 18, 52062 Aachen

2. Department for Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen

3. Rhein-Maas Klinik, Department of Orthopaedics and Trauma Surgery, Mauerfeldchen 25, 52146 Würselen

4. Department of Spine Surgery, Klinikum Leverkusen gGmbH, Am Gesundheitspark 11, 51375 Leverkusen; Faculty of Medicine, University Hospital of Cologne, Joseph-Stelzmann-Str. 20, 50931 Köln

Abstract

Abstract Lumbar Lordotic correction (LLC), the gold standard treatment for Sagittal Spinal malalignment (SMA), and its effect on sagittal balance have been critically discussed in recent studies. This paper assesses the biomechanical response of the spinal components to LLC as an additional factor for the evaluation of LLC. Human lumbar spines (L2L5) were loaded with combined bending moments in Flexion (Flex)/Extension (Ex) or Lateral Bending (LatBend) and Axial Rotation (AxRot) in a physiological environment. We examined the dependency of AxRot range of motion (RoM) on the applied bending moment. The results were used to validate a Finite Element (FE) model of the lumbar spine. With this model, the biomechanical response of the intervertebral discs (IVD) and facet joints under daily motion was studied for different sagittal spinal alignment (SA) postures, simulated by a motion in Flex/Ex direction. Applied bending moments decreased AxRot RoM significantly (all P<0.001). A stronger decline of AxRot RoM for Ex than for Flex direction was observed (all P<0.0001). Our simulated results largely agreed with the experimental data (all R2>0.79). During daily motion, the IVD was loaded higher with increasing lumbar lordosis (LL) for all evaluated values at L2L3 and L3L4 and posterior Annulus Stress (AS) at L4L5 (all P<0.0476). The results of this study indicate that LLC with large extensions of LL may not always be advantageous regarding the biomechanical loading of the IVD. This finding may be used to improve the planning process of LLC treatments.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3