Rotary Heat Exchangers With Time Varying or Nonuniform Inlet Temperatures

Author:

Brandemuehl M. J.1,Banks P. J.2

Affiliation:

1. Research Division, Carrier Corporation, Syracuse, N.Y. 13221

2. Division of Energy Technology, Commonwealth Scientific and Industrial Research Organization, Highett, Victoria 3190, Australia

Abstract

The performance of a counterflow, rotary heat exchanger operating with either transient or nonuniform inlet temperatures is investigated. The effect of transient inlet temperatures is analyzed in terms of the response of the outlet fluid temperatures to a step change in temperature of one of the inlet fluid streams. The effect of temperature nonuniformities is analyzed in terms of the change in steady-state effectiveness due to a circumferential temperature distribution in one of the inlet fluid streams. These temporal and spatial variations are explored using three different methods of analysis. An equilibrium analysis, assuming infinite heat transfer coefficients, is developed from kinematic wave theory. It is used to qualitatively describe the heat transfer process and define the upper limit of performance. A finite difference model of the governing differential equations, using finite transfer coefficients, is employed to obtain a detailed numerical analysis of heat exchanger performance. Results for the complete range of matrix to fluid capacity rate ratio are presented for a balanced and symmetric regenerator. At moderate capacity rate ratios, the numerical analysis predicts unusual temporal periodicity in the transient response. An experimental analysis has also been conducted using a counterflow, parallel passage, rotary heat exchanger made from polyester film. The results are used to substantiate predictions of the numerical model.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3