Prediction of Fluid Temperatures From Measurements of Outside Wall Temperatures in Pipes

Author:

Guyette M.1

Affiliation:

1. Tractebel Energy Engineering, 7, avenue Ariane, 1200 Brussels, Belgium

Abstract

The monitoring of the fatigue induced by thermal transients in thick-walled structures becomes more and more currently performed, mainly on equipment the failure of which could present severe implications on the environment. The easiest way of performing this monitoring is by use of Green’s functions in a convolution integral of the measured fluid temperatures to assess the stresses at the points of interest. Numerous cases, however, exist where the fluid temperatures are not available and only an outside wall temperature measurement is feasible. This paper describes the development and the industrial application of the so-called “inverse” transfer functions to predict the evolution of the fluid temperature from measurements of the metal temperature either at the outside or in the wall of the considered equipment. Some applications are shown for the particular case of the thermal stratification in piping systems.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3