Stokes Flow Characteristics in a Cylindrical Quadrant Duct With Rotating Outer Wall

Author:

Wang Zongyong1,Zhao Jiayu1,Wu Jianhua2

Affiliation:

1. School of Energy and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China e-mail:

2. School of Energy and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, China

Abstract

The Stokes flow in a cylindrical quadrant duct with a rotating wall was analytically and numerically studied. Based on mathematics and fluid dynamics theory, the analytical expressions of three velocity components were achieved by solving a Poisson's equation and a biharmonic equation. Especially, a closed-form analytical expression of axial velocity was obtained, which can greatly improve the calculating accuracy and speed in analyzing Stokes flow. The velocity distributions for different Reynolds numbers were investigated numerically to insure the accuracy of the analytical results at low Reynolds numbers and to confirm the error range of the analytic results at higher Reynolds numbers. The conclusion indicates that there exists an infinite sequence of eddies that decrease exponentially in size towards the sectorial vertex. The width of the first eddy region reached 99.4% of the sector radius; the sum of the width of other eddies is only 0.6% of the sector radius, which cannot be easily displayed graphically, while the sequence of eddies contributes to form the chaotic flow. The maximum deviations of the velocity components between the analytical results and simulated ones are all less than 1% when Re < 0.1, which verifies the validity and accuracy of the analytical expressions in the creeping flow regime. The analytical expressions are not only suitable for creeping flow but also for laminar flow with smaller Reynolds number (Re < 50).

Publisher

ASME International

Subject

Mechanical Engineering

Reference21 articles.

1. Stokes Flow in a Rectangular Cavity With a Cylinder;Fluid Dyn. Res.,1999

2. Slow Mixed Convection in Rectangular Containers;J. Fluid Mech.,2002

3. Stokes Flow Through a Periodically Grooved Tube;ASME J. Fluids. Eng.,2010

4. Streamline Topologies Near a Stationary Wall of Stokes Flow in a Cavity;Appl. Math. Comput.,2005

5. Bifurcations and Eddy Genesis of Stokes Flow Within a Sectorial Cavity;Eur. J. Mech. B/Fluids,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3