Pain After Whole-Body Vibration Exposure Is Frequency Dependent and Independent of the Resonant Frequency: Lessons From an In Vivo Rat Model

Author:

Holsgrove Timothy P.1,Zeeman Martha E.2,Welch William C.3,Winkelstein Beth A.4

Affiliation:

1. Department of Engineering, University of Exeter, Harrison Building, Streatham Campus, Exeter EX4 4AG, UK

2. Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 210 South 33rd Street, Room 240 Skirkanich Hall, Philadelphia PA 19104

3. Department of Neurosurgery, University of Pennsylvania, Pennsylvania Hospital, Washington Square West Building, 235 South 8th Street, Philadelphia, PA 19106

4. Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 210 South 33rd Street, Room 240 Skirkanich Hall, Philadelphia PA 19104; Department of Neurosurgery, University of Pennsylvania, Pennsylvania Hospital, Washington Square West Building, 235 South 8th Street, Philadelphia, PA 19106

Abstract

AbstractOccupational whole-body vibration (WBV) increases the risk of developing low back and neck pain; yet, there has also been an increased use of therapeutic WBV in recent years. Although the resonant frequency (fr) of the spine decreases as the exposure acceleration increases, effects of varying the vibration profile, including peak-to-peak displacement (sptp), root-mean-squared acceleration (arms), and frequency (f), on pain onset are not known. An established in vivo rat model of WBV was used to characterize the resonance of the spine using sinusoidal sweeps. The relationship between arms and fr was defined and implemented to assess behavioral sensitivity—a proxy for pain. Five groups were subjected to a single 30-min exposure, each with a different vibration profile, and a sham group underwent only anesthesia exposure. The behavioral sensitivity was assessed at baseline and for 7 days following WBV-exposure. Only WBV at 8 Hz induced behavioral sensitivity, and the higher arms exposure at 8 Hz led to a more robust pain response. These results suggest that the development of pain is frequency-dependent, but further research into the mechanisms leading to pain is warranted to fully understand which WBV profiles may be detrimental or beneficial.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3