Affiliation:
1. Idaho State University, Pocatello, ID
Abstract
Traditional electromyopgrahic (EMG) measurements are based on single sensor information. Due to the arrangement of skeletal muscle fibers for hand motions, cross talk is an inherent problem when inferring motion/force potentials from EMG data. This paper studies means of using sensor arrays to infer better motion/force potential for prosthetic hands. In particular, a surface electromyographic (sEMG) sensor array is used to investigate multiple model fusion techniques. This paper provides a comparison between three statistical model selection criteria. The sEMG signals are pre-processed using four filters, Butterworth, Chebyshev type-II, as well as Bayesian filters such as the Exponential and Half-Gaussian filter. Output Error (OE) models were extracted from sEMG data and hand force data and compared using a Bayesian based fusion model. The four different filters effect were quantified based on the OE models performance in matching the actual measured data. The comparison indicates a preference for using the sensor fusion technique with preprocessed EMG data using the Half-Gaussian Bayesian filter and the Kullback Information Criterion (KIC).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献