Soft Switching Approach to Reducing Transition Losses in an On/Off Hydraulic Valve

Author:

Rannow Michael B.1,Li Perry Y.1

Affiliation:

1. University of Minnesota, Minneapolis, MN

Abstract

A method for significantly reducing the losses associated with an on/off controlled hydraulic system is proposed. There has been a growing interest in the use of on/off valves to control hydraulic systems as a means of improving system efficiency. While on/off valves are efficient when they are fully open or fully closed, a significant amount of energy can be lost in throttling as the valve transitions between the two states. A soft switching approach is proposed as a method of eliminating the majority of these transition losses. The operating principle of soft switching is that fluid can temporarily flow through a check valve or into a small chamber while valve orifices are partially closed. The fluid can then flow out of the chamber once the valve has fully transitioned. Thus, fluid flows through the valve only when it is in its most efficient fully open state. A model of the system is derived and simulated, with results indicating that the soft switching approach can reduce transition and compressibility losses by 79%, and total system losses by 66%. Design equations are also derived. The soft switching approach has the potential to improve the efficiency of on/off controlled systems and is particularly important as switching frequencies are increased. The soft switching approach will also facilitate the use of slower on/off valves for effective on/off control; in simulation, a valve with soft switching matched the efficiency an on/off valve that was 5 times faster.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3